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• Part I – Basic notions: 

- Modeling and simulation 

- Crash intro to Graph Theory

• Part II – a Boolean model for regulatory network simulation

• Part III - BioNSi tool hands-on



Mathematical Models and Computer Simulation

• Simulation: an imitation of how a real-world process or system 

operates over time

A computer simulation (aka in silico experiments) is a simulation 

run on computers. 

• In biology, computer simulation is used to replace / complement 

some tedious and costly lab experiments.

It enables conducting numerous “experiments” under various 

conditions, in a scale that is infeasible experimentally.3



Mathematical Models and Simulation (cont.)

• Running a computer simulation requires constructing a 

mathematical model - some formal representation of the 

system using, e.g., equations and algorithms. 

• A model is an abstraction of reality.

A valuable model should capture the relevant aspects of the 

system, with the appropriate level of detail.

• Advantages of using math. models and simulation in biology:

1) Descriptive: forces clarity of expression and precision in 

describing systems / processes / hypotheses

2) Analytic: promotes understanding and provides insights

3) Predictive: enables predictions regarding the behavior of 

the system under various conditions
4



Quantitative vs. Qualitative Models

• Qualitative* models predict trends, types of dynamics, and 

general properties, such as:

- Robustness to mutations

- Stability against perturbations (e.g., change in a cell’s conditions)

- Fail-safety

- Conditions for cyclic behavior

• Quantitative** models predict specific values that can be 

compared to actual experimental data, such as:

- Kinetics

- Concentrations

- Expression levels

5
* Heb: איכותני ** Heb: כמותני



Continuous vs. Discrete Models

• Continuous*: infinitely divisible (e.g. reals)

• Usually in the form of differential equations

• Provide a high resolution description of the biological system

• Discrete**: made of distinct, indivisible units (e.g. integers)

• Discrete time: time progresses in discrete steps (clock tics)

• Discrete space: biological quantities are discrete

• Discrete models tend to be simpler, 

more computationally efficiency, 

and require less detailed biological data.
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Continuous vs. Discrete Models (cont.)

• What about biological quantities? Are they discrete or 

continuous?

e.g.: interactions, concentrations, reaction times, signals, etc.

• Whether these are really continuous or discrete is a physical 

question, or maybe even a philosophical one.

But anyway, modeling does not have to conform with the 

nature of the modeled entity.
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Networks
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Biological Networks - Examples
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The PPI Network in yeast

Jeong  et al., Nature  (2001)

Metabolic and amino acid 

biosynthesis pathways of yeast

Schryer et al., BMC Systems 

Biology, (2011)

E. coli transcriptional regulatory network 

Guzmán-Vargas  et al., BMC Systems 

Biology (2008)

Signaling network in neurons

Klipp et al., BMC neuroscience (2006). 

http://www.nature.com/nature/journal/v411/n6833/full/411041a0.html
http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-5-81
http://www.biomedcentral.com/1752-0509/2/13/figure/F1?highres=y
http://www.biomedcentral.com/1752-0509/2/13/figure/F1?highres=y
http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-2-13
http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-7-S1-S10


Visualization and Analysis of Biological Networks
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• There are various tools and software packages for the visualization of 

networks. 

• When the networks are large and dense, it is sometimes difficult to 

extract meaningful information from their visual representation.

• Computational analyses of networks enable valuable insights into their 

structure, properties and behavior.

• The mathematical structure used to model networks is called a graph. 

Graph theory deals with studying various aspects of graphs.



Introduction to Graph Theory
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• A graph is a set of interactions, or relationships, between pairs of objects.

• The objects are called nodes*, and the interactions are termed edges**.

• If the edges have directions, the graph is called a directed graph (or digraph). 

Otherwise it is an undirected graph.

* or vertices (sg. vertex). Hebrew:  קדקד/ צומת ** or arcs, links, chains. Hebrew:  צלע/ קשת



Graphs – More Formally
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• A graph G is a pair G = (V, E) where:

- V is a set of element (called nodes)

- E is a set of pairs from V (called edges)

• In an undirected graph we ignore the order of nodes in an edge.

V = {a,b,c,d}

E = {(a,b),(a,c),(c,c)}

a

c

b

d

a

c

b

d



Basic Notions
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• Common notations: |V| = n  ,  |E| = m

• neighboring / adjacent /connected nodes

• neighborhood of a node

• degree of a node (for directed graphs: in-degree and out-degree)

• a loop

V = {a,b,c,d}

E = {(a,b),(a,c),(c,c)}

a

c

b

d

a

c

b

d



Weighted Graphs
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• A weighted graph is a graph in which edges are assigned values, called weights.

• What can weights resemble in a biological context?

a

c

b

d
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-1



Paths and Connectivity
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a

c

b

d

• A path p in a graph G = (V, E) is a sequence of nodes

p = (v1, v2, …, vk)

Such that (vi , vi+1)  E  for every 1≤i<k

If v1=vk then the path is called a cycle.

• The length or weight of a path p is the number of edges in it.

In weighted graphs, this is the sum of weights along the path.

• A graph is connected if there is a path from every node to every other node (in 

other words every node is reachable from any other node)



Special Graphs
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• Tree

An undirected graph that is:

- connected

- acyclic (= contains no cycles)

• Rooted tree

A tree with a special node called root.

This defines a hierarchy:

- parents and ancestors

- children and descendants

A leaf is a node with no children.

the 

root

leaves In CS, rooted trees grow downwards…

(A full binary tree with 16 leaves.

Courtesy of Dr. Shlomit Pinter, 

photo taken in Kenya, 2005)



Graph Representation
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• One simple way to represent  a graph is a matrix of adjacencies

(there are additional ways that we will not discuss).

G = [ [ 0,-2, 1, 0],

[-2, 0, 0, 0],

[ 1, 0,-1, 0],

[ 0, 0, 0, 0] ]

0

2

1

3

-2
+1

-1

• For example, G[1][0] == -2, and G[3][1] == 0.



The Bigger Picture
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• Graph theory and graph algorithms are very central within CS.

Computational biologists use graph theory to study properties of biological 

networks, and graph algorithms to solve biological problems (some examples 

next).



Common Problems in Graph Theory
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• The shortest path problem: find a path from s to t ,

whose “cost” is minimal.

• The maximal flow problem: find a maximum 

feasible flow from s to t.

(weights are flow capacities).

• The spanning tree problem: find a subgraph that is a tree and 

connects all the vertices, with minimal total weight.

• You may also want to check out these two famous topics, related to 

graph theory: the 7 bridges of Königsberg, and the 4 color theorem.

s t

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
http://en.wikipedia.org/wiki/Four-color_theorem


Outline

20

• Part I – Basic notions: 

- Modeling and simulation 

- Crash intro to Graph Theory

• Part II – a Boolean model for regulatory network simulation

• Part III - BioNSi tool hands-on



Boolean Model for Regulatory Networks

• Boolean - 0/1

• A simple case of a discrete model

• Qualitative

Based on the paper: 
The yeast cell-cycle network is robustly designed, 

Li et. al., PNAS 2004
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http://www.pnas.org/content/101/14/4781.full.pdf


The Boolean Model – User Input

• The model consists of a graph with states.

• Nodes: can represent proteins, mRNA, 

nutrients, cellular events (e.g. mitosis), 

external signals (e.g. light, injected hormone)

• Can assume state 0 (non active)

or 1 (active)

• A vector of the network is a sequence of all nodes’ states:

[0,1,1,1]

• Each node is given an initial state. So the network has an initial vector.

• Edges: regulation effects

weighted

(+ activation)

(- inhibition)

D

B C

A

D

-1-1

+1

B

-1

C
-1

+1

1 1

0

1
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The Boolean Model - Simulation

• Time is discrete (time steps = 1,2,3,…)

• A transition function determines the states of nodes in the next 

time step in a synchronous fashion.

It moves the system into the next vector.

• Transition function is applied repeatedly,

until one of two options:

 Steady state (aka "fixed point") 
2 consecutive identical vectors

 Infinite loop
2 non-consecutive identical vectors D

B C

A

D

-1

-1-1

-1

+1

+1

B

-1

C

-1

+1

1 1

0

123



The Boolean Model – Transition Function

• Transition function:

Sums the effects on each node, caused 

by all its incoming edges.

σ𝑖(𝑡) = 

𝑗

𝑤(𝑗, 𝑖) ∙ 𝑠𝑗(𝑡)

• The state update:

𝑠𝑖 𝑡 + 1 =  

1 if σ𝑖 𝑡 > 0

0 if σ𝑖 𝑡 < 0

𝑠𝑖 𝑡 else

state of node j

at time step t

weight of 

edge (j ,i)
D

B C

A

D

-1

-1-1

-1

+1

+1

B

-1

C

-1

+1

1 1

0

1
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D

B C

A

D

-1

-1-1

-1

+1

+1

B

-1

C

-1

+ ++1

Example 1

A B C D

t1: 1 1 0 0

t2: 0

• Let's see what happens to node A at t2:

= -1

25



D

B C

A

D

-1

-1-1

-1

+1

+1

B

-1

C

-1

+ ++1

Example 2

A B C D

t1: 1 0 0 1

t2: 1

= +1
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• Let's see what happens to node A at t2:



D

B C

A

D

-1

-1-1

-1

+1

+1

B

-1

C

-1

+ ++1

Example 3

A B C D

t1: 1 0 1 1

t2: 1

= 0

27

• Let's see what happens to node A at t2:



B C

A

D

E

F

A B C D E F

t1: 1 0 1 0 0 0

t2: 0 0 1 1 0 0

t3: 0 0 1 1 1 0

t4: 0 0 1 1 1 1

t5: 0 0 1 0 1 1

t6: 0 0 1 0 1 1

Vectors in t5 and t6 are identical  steady state.

Can the system get out of this steady-state in the future?

A Simulation - Full Example

28



Exercise - Loops

Give an example for a network and initial vector that yield an 

infinite loop. 

Hint: 2 nodes are enough.

29



• 11 nodes – main regulators of yeast cell-cycle. 

• "Cell Size" is the signal for entry into cell-cycle

• Each node can be either 0/1.

Red/yellow edges: weight = -1

Green edges: weight = +1

• Simulation is executed on all possible initial vectors. 

How many?

How many potential fixed points?

Case Study: The Cell-Cycle in Yeast

30

“The yeast cell-cycle network is robustly designed”, Li et. al., PNAS 2004

http://www.pnas.org/content/101/14/4781.full.pdf


The main "attractor":
this steady state attracts 
~86% of initial states.

Yeast Cell-Cycle Simulation Fixed Points

31

• No initial vector yields a loop.

• Out of 211 = 2048 potential steady states, only 7 are reached !



A Complete Cell-Cycle Simulation
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• Start with a vector representing stationary G1 condition but 

with Cln3=1 (signal to initiate cell cycle).

• As indicated in the table, this simulation is compatible with the 

cell cycle stages:   G1  S  G2 M  G1 (stationary)



Cell-Cycle in Yeast - Transitions Tree

Transition tree for the 
main "attractor" 

1764 = 86% of initial vectors.

(there are 6 other, smaller trees)

33

• Each node in the tree represents a vector, edges represent 

transitions in the simulation.

From The yeast cell-cycle network is robustly designed, Li et. al., PNAS 2004.

Tree drawn with Pajek software (http://vlado.fmf.uni-lj.si/pub/networks/pajek)

http://www.pnas.org/content/101/14/4781.full.pdf
http://vlado.fmf.uni-lj.si/pub/networks/pajek


• The yeast cell-cycle is stable.

Computational observation: with high probability, changes to the 

initial vectors yield the same fixed point. 

• The yeast cell-cycle is robust.

Computational observation: with high probability, small changes in 

the network structure (insert/delete node, change edge) will not 

harm cell cycle behavior.

Cell-Cycle in Yeast - Paper Conclusions

34



Extensions to the Boolean Model
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Extension 1: Discrete State Space

• Instead of 0/1, nodes can now assume states between 0,…,U

(e.g. U=9)

• U=1 is the special case of the Boolean model we saw

• Transition function changes accordingly:

𝑠𝑖 𝑡 + 1 =  

𝑚𝑖𝑛(𝑈, 𝑠𝑖 𝑡 + 1) if σ𝑖 𝑡 > 0

𝑚𝑎𝑥 0, 𝑠𝑖 𝑡 − 1 if σ𝑖 𝑡 < 0

𝑠𝑖 𝑡 else

36

σ𝑖(𝑡) = 

𝑗

𝑤(𝑗, 𝑖) ∙ 𝑠𝑗(𝑡)

0
1
2
3
4
5
6
7
8
9

0 20 40



Extension 2: State Update Function

• States change by ±1 no matter what.

• We may prefer the change to be proportional to σ𝑖 𝑡 .

𝑠𝑖 𝑡 + 1 =  

𝑚𝑖𝑛(𝑈, 𝑠𝑖 𝑡 + ? ) if σ𝑖 𝑡 > 0

𝑚𝑎𝑥 0, 𝑠𝑖 𝑡 − ? if σ𝑖 𝑡 < 0

𝑠𝑖 𝑡 else

• One reasonable option is a logarithmic order update:

37 |σ|
0     1    2     3    4    5    6    7     8  …

|𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒|

3

2

1



Extensions 3, 4, …

• A new type of interactions called dependency edges: nodes 

may block or enable other edges

• Delays on edges

• The effect of node a on node b will occur in later steps

• …38

If A>0 edge BD is blocked

D

B C

A

D

-1

-1-1

-1

+1

+1

B

-1

C

-1

+1



BioNSi – Biological Network Simulator

• Cytoscape is an open source software for visualization and analysis of 

networks and pathways (www.cytoscape.org).

• BioNSi is a plugin (app) of Cytoscape (http://bionsi.wix.com/bionsi)

It extends the Boolean model in several ways, including those mentioned.

39 The circadian clock in mammalians in a day-night regime, in BioNSi

http://www.cytoscape.org/
http://bionsi.wix.com/bionsi
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- Modeling and simulation 

- Crash intro to Graph Theory

• Part II – a Boolean model for regulatory network simulation

• Part III - BioNSi tool hands-on



BioNSi Hands-on Session
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• Open Cytoscape (installed in this lab’s computers)

• Go to bionsi.wix.com/bionsi

• Click Download, save the file (BioNSi.jar) on your computer

• In Cytoscape’s main menu:

• click Apps App Manager  Install from file

• Choose BioNsi.jar file

• BioNSi is now installed.

• In BioNSi’s website, go to Examples  Toy example

• Open the pdf and follow the tutorial

http://bionsi.wix.com/bionsi


Reflection: Constructing the “Right” Model?

• Main considerations in constructing mathematical

models in biology:

• Recall that even “incorrect” models may make correct predictions

42

Consideration Meaning Beware of 

Modeling 

technique 

Which model type is best suited 

for the data and goals of study?

Intractable approaches, too 

simplified, no sufficient data, etc.

Scope What elements should be 

included in the model? 

Excluding essential elements or 

including irrelevant ones 

Detail What level of detail should the 

model contain?

Too fine- or course-grained 

models

Parameters How to set the model 

parameters appropriately?

Parameter overfitting



Reflection: Iterative Simulation-Experiment 

Approach
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Gain biological data 
through experiments and 

literature

Construct/refine model 
and run simulations

Compare to data

Make predictions

Design new experiments

• Using models can point to gaps 

in our biological understanding: 

a model that fails to recapitulate 

known biological data reveals 

where our understanding needs 

improvement. 



Reflection: Discrete Models
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• Computer Science is highly biased towards discrete notions, such 

as graphs (networks), strings (textual sequences), digital images, 

etc. 

• Discrete notions and algorithms are highly underrepresented in life 

science curricula, where continuous notions (such as equations 

over the reals) and probability are taught more widely.



Advertisement:

Computational Approaches for Life Scientists

Course url: ca4ls.wikidot.com
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• A course designed to enrich biologists with computational thinking, and basic 

ideas and notions from computer science, beyond programming and tools.

http://ca4ls.wikidot.com/

